What is Virtual Reality?

The term “virtual reality” can be better understood by taking a closer look at the two words that comprise it. “Virtual” means almost or nearly as described and “reality” is what we experience around ourselves using our senses. Following that logic, “virtual reality” means something that is near to reality.

However, we generally define virtual reality as a simulated environment designed to give your senses a feeling of realness. Technically, this means to immerse a person in a three-dimensional computer-generated environment and allow them to interact with it by manipulating objects to perform certain actions.

While people have historically passed information via screens and keyboards, VR seeks to remove that annoying middle layer altogether. When you put on a VR headset, it isolates you from your surroundings visually and takes you to a simulated setup. As a result, VR has found wide range of applications in architecture, medicine and, of course, the ever-growing gaming industry (as it allows you to not only play the game, but to get inside of it and give you the feeling of presence in that specific environment).

Today, VR is also finding application in the design-build industry, allowing engineers to interact with large datasets in an intuitive and productive way. As this technology becomes cheaper and more widespread, it has the potential to become a daily tool for engineers to use on their projects.

HTC Vive headset and controllers

VR Application in CFD

Computational Fluid Dynamics (CFD) is a powerful simulation tool that is widely used in many industries to model and optimize the design, as well as save energy and reduce costs. Historically, CFD engineers have used a variety of methods for post processing and different software to visualize the results. However, all these traditional methods are either two-dimensional pictures or animations.

Recently, VR has been adopted for CFD post processing to better understand the simulation results and make it intuitive for non-experts to easily understand the analysis. This method also helps CFD engineers to interpret the results by giving them insights that make it possible to detect the design problems and plan for changes more rapidly than was previously possible. This tool has several features for visualization such as:

  • Cutting planes
  • Dragging and translating CFD elements within the model
  • 3-D zoom in/out

Currently, there are few platforms that support VR for CFD results. At Southland Industries, we have successfully used and tested ParaView software with HTC vive (Very Immersive Virtual Experience) to analyze the airflow and thermal comfort within a stadium. The results are visualized using streamlines, temperature contours and vectors while the engineer can walk anywhere in the model. In addition, they can grab or scale the streamline and move them around.

By using this method, an engineer can quickly get the overall understanding of the airflow inside the stadium and detect hot spots to decide about necessary changes within the HVAC design.


One of the main questions as it relates to VR in the CFD field is what is its future? There is a lot of discussion of developing new methods of pre-processing and meshing and creating more robust solvers. Those areas all worthy of attention, but the value of the CFD is in analyzing the results. Without accurate post processing, all previous steps are useless. For over 15 years, we have been using the same traditional methods — 2-D contours, iso-surfaces and flow paths. CFD is about complex 3-D data and virtual reality enables you to interact with the model in a fully immersive 3-D experience. Therefore, we should expect to hear more about application of VR for CFD analysis in the future.

Screenshot of the CFD results of a stadium using VR

Investigating the CFD results using VR

  • Mehran Salehi, PhD

    CFD Analyst

    As a CFD Analyst at Southland Engineering, Mehran Salehi optimizes designs through CFD modeling for projects and collaborates with engineers to ensure each design meets specific environment standards. His wealth of knowledge regarding data collections, pre-processing data, running CFD simulations, and providing design recommendations have led to successful outcomes on several confidential data center and casino projects, as well as the Mercedes-Benz Stadium in Atlanta.

  • Show Comments (0)

Your email address will not be published. Required fields are marked *

comment *

  • name *

  • email *

  • website *

You May Also Like

Expanding Southland’s Service Capabilities in the Southwest

In November 2012, Southland’s Southwest Division decided to expand its service capabilities within the ...

Supporting the Community Through Symbolic Projects

The National Museum of African American History and Culture (NMAAHC) is a new Smithsonian ...

Cardiac Arrest Training: A Matter of Life and Death

Back in May, as part of In the Big Room’s “Construction Safety Week” series, ...

We are Open, Sorry for the Inconvenience

How open is open? The term “open system” in the building automation world can ...

Sharing the Risk in ILPD

Initially trademarked by the Boldt Group, the Integrated Lean Project Delivery (ILPD) method strives ...